Article ID Journal Published Year Pages File Type
6277061 Neuroscience 2010 16 Pages PDF
Abstract
Guanine nucleotide-binding protein β3 (GNB3) is an isoform of the β subunit of the heterotrimeric G protein second messenger complex that is commonly associated with transmembrane receptors. The presence of GNB3 in photoreceptors, and possibly bipolar cells, has been confirmed in murine, bovine and primate retinas [Lee RH, Lieberman BS, Yamane HK, Bok D, Fung BK (1992) J Biol Chem 267:24776-24781; Peng YW, Robishaw JD, Levine MA, Yau KW (1992) Proc Natl Acad Sci U S A 89:10882-10886; Huang L, Max M, Margolskee RF, Su H, Masland RH, Euler T (2003) J Comp Neurol 455:1-10]. Studies have indicated that a mutation in the GNB3 gene causes progressive retinopathy and globe enlargement (RGE) in chickens. The goals of this study were to (1) examine the expression pattern of GNB3 in wild-type and RGE mutant chickens, (2) characterize the types of bipolar cells that express GNB3 and (3) examine whether the expression of GNB3 in the retina is conserved across vertebrate species. We find that chickens homozygous for the RGE allele completely lack GNB3 protein. We find that the pattern of expression of GNB3 in the retina is highly conserved across vertebrate species, including teleost fish (Carassius auratus), frogs (Xenopus laevis), chickens (Gallus domesticus), mice (Mus musculata), guinea-pigs (Cavia porcellus), dogs (Canis familiaris) and non-human primates (Macaca fasicularis). Regardless of the species, we find that GNB3 is expressed by Islet1-positive cone ON-bipolar cells and by cone photoreceptors. In some vertebrates, GNB3-immunoreactivity was observed in both rod and cone photoreceptors. A protein-protein alignment of GNB3 across different vertebrates, from fish to humans, indicates a high degree (>92%) of sequence conservation. Given that analogous types of retinal neurons express GNB3 in different species, we propose that the functions and the mechanisms that regulate the expression of GNB3 are highly conserved.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , , ,