Article ID Journal Published Year Pages File Type
6278852 Neuroscience Letters 2016 7 Pages PDF
Abstract
Repeated exposure to high doses of methamphetamine (METH) is known to alter several neurotransmitters in certain brain regions. Little is known about the effects of ceftriaxone (CEF), a β-lactam antibiotic, known to upregulate glutamate transporter subtype 1, post-treatment on METH-induced depletion of dopamine and serotonin (5-HT) tissue content in brain reward regions. Moreover, the effects of METH and CEF post-treatment on glutamate and glutamine tissue content are not well understood. In this study, Wistar rats were used to investigate the effects of METH and CEF post-treatment on tissue content of dopamine/5-HT and glutamate/glutamine in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Rats received either saline or METH (10 mg/kg, i.p. every 2 h × 4) followed by either saline or CEF (200 mg/kg, i.p, every day × 3) post-treatment. METH induced a significant depletion of dopamine and 5-HT in the NAc and PFC. Importantly, dopamine tissue content was completely restored in the NAc following CEF post-treatment. Additionally, METH caused a significant decrease in glutamate and glutamine tissue content in PFC, and this effect was attenuated by CEF post-treatment. These findings demonstrate for the first time the attenuating effects of CEF post-treatment on METH induced alterations in the tissue contents of dopamine, glutamate, and glutamine.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , , , ,