Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6279132 | Neuroscience Letters | 2016 | 7 Pages |
Abstract
Mutations in parkin cause autosomal recessive Parkinsonism and mitochondrial defects. A recent drug screen identified a class of steroid-like hydrophobic compounds able to rescue mitochondrial function in parkin-mutant fibroblasts. Whilst these possess therapeutic potential, the size and high hydrophobicity of some may limit their ability to penetrate the blood-brain barrier from systemic circulation, something that could be improved by novel drug formulations. In the present study, the steroid-like compounds Ursolic Acid (UA) and Ursocholanic Acid (UCA) were successfully encapsulated within nanoscopic polymersomes formed by poly(2-(methacryloyloxy)ethyl phosphorylcholine)-poly(2-di-isopropylamino)ethyl methacrylate) (PMPC-PDPA) and separated into spherical and tubular morphologies to assess the effects of nanoparticle mediated delivery on drug efficacy. Following incubation with either morphology, parkin-mutant fibroblasts demonstrated time and concentration dependent increases in intracellular ATP levels, resembling those resulting from treatment with nascent UA and UCA formulated in 0.1% DMSO, as used in the original drug screen. Empty PMPC-PDPA polymersomes did not alter physiological measures related to mitochondrial function or induce cytotoxicity. In combination with other techniques such as ligand functionalisation, PMPC-PDPA nanoparticles of well-defined morphology may prove a promising platform for tailoring the pharmacokinetic profile and organ specific bio-distribution of highly hydrophobic compounds.
Keywords
RCFUDCAFSCTMRMHFFTFRELSDMPEG-PCLSSCFBSDMEMTFAMMPFDADehydroergosterolDLSRP-HPLCDMSODulbecco’s modified Eagle mediumAdenosine tri-phosphateATPEvaporative light-scattering detectorAktFederal Drug AdministrationTrifluoroacetic acidUrsolic acidstandard deviationUrsodeoxycholic acidTemUcaParkinson’s diseaseanalysis of varianceANOVAminimum essential mediadimethyl-sulfoxideblood brain barrierBBBfoetal bovine serumlactate dehydrogenaseLDHMEMMitochondriaTransmission electron microscopyrelative centrifugal forceDHEMolecular weightParkinMitochondrial membrane potentialForward scatteringDynamic Light Scatteringprotein kinase BPolymersomeReverse-phase high performance liquid chromatography
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
G. Yealland, G. Battaglia, O. Bandmann, H Mortiboys,