Article ID Journal Published Year Pages File Type
6282009 Neuroscience Letters 2014 5 Pages PDF
Abstract
We measured magnetic cortical responses to self-paced finger movements. Wide frequency band measurements revealed sharp elements of the response wave-shape, and allowed analysis of individual trials. The signal time course was decomposed into three components in the time window from 600 ms before to 600 ms after the movement. Each component had its own wave-shape and highly individual behavior. Two components displayed large trial-to-trial amplitude variations, whereas the amplitude of the third, high-frequency component remained stable. The frequency spectrum of the high-frequency component decayed exponentially, which indicates deterministic dynamics for the processes generating this magnetic signal. In spite of the large variations in the movement-related cortical signals, the movement itself, as measured by accelerometer attached to the finger tip, remained stable from trial to trial. The magnetic measurements are well-suited to reveal fine details of the process of movement initiation.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
,