Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6286195 | Neuroscience Research | 2014 | 11 Pages |
Abstract
As for the mechanism of the switching, recent progress in molecular research on dynamism of the chromatin and transcription-factors revealed the irreversible epigenetic changes controlling the switch. In Stage I of cytogenesis, axial ectodermal cells escape from irreversible differentiation into epidermis, and change into matrix cells composing the neural plate. In Stage II, some matrix cells, in which proneural genes are activated, exit cell cycle to become neurons. When Stage II ends, the neural-repressor REST/NRSBF is up regulated and occupies RE-1 silencer region to irreversibly inactivate neuron-specific genes including the type II Na+ channel, thereby matrix cells can now only produce non-excitable cells, i.e., glial cells. This is the Stage III of cytogenesis of the CNS.
Keywords
Related Topics
Life Sciences
Neuroscience
Neuroscience (General)
Authors
Setsuya Fujita,