Article ID Journal Published Year Pages File Type
6286386 Neuroscience Research 2013 6 Pages PDF
Abstract
We previously observed that transient vascular occlusion in volunteers increased the estimation of force exertion with no change in peripheral nerves or muscles. We hypothesized that the primary factor responsible for the overestimation of force exertion during occlusion was the centrally generated motor command, as hypothesized by McCloskey et al. (1974) and McCloskey (1978, 1981). In the present study, we tested the hypothesis that transient vascular occlusion increases the excitability of the primary motor cortex (M1) during force exertion. Healthy human volunteers lay on a bed and squeezed a dynamometer in their right hand. Repetitive gripping forces were exerted at 20%, 40%, or 60% of maximum force, with or without transient (20 s) vascular occlusion of the proximal portion of the right upper arm. During the task, single-pulse transcranial magnetic stimulation was applied to the contralateral M1 to induce motor evoked potentials (MEPs) in the flexor carpi ulnaris (FCU) muscle. The MEP amplitudes were enhanced with occlusion under all conditions, with the exception of 60% contraction. In contrast, no significant difference was observed between the MEP amplitudes obtained from the occluded or non-occluded, relaxed FCU muscle. These results suggest that transient vascular occlusion increases the excitability of M1 only during force exertion.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,