Article ID Journal Published Year Pages File Type
6286713 Trends in Neurosciences 2014 10 Pages PDF
Abstract
The unitary firing fields of hippocampal place cells are commonly assumed to be generated by input from entorhinal grid cell modules with differing spatial scales. Here, we review recent research that brings this assumption into doubt. Instead, we propose that place cell spatial firing patterns are determined by environmental sensory inputs, including those representing the distance and direction to environmental boundaries, while grid cells provide a complementary self-motion related input that contributes to maintaining place cell firing. In this view, grid and place cell firing patterns are not successive stages of a processing hierarchy, but complementary and interacting representations that work in combination to support the reliable coding of large-scale space.
Related Topics
Life Sciences Neuroscience Neuroscience (General)
Authors
, , ,