Article ID Journal Published Year Pages File Type
6287077 Hearing Research 2016 54 Pages PDF
Abstract
Children have benefited from bilateral cochlear implants (CIs) over unilateral CIs despite often missing important periods in bilateral auditory development. This suggests a remarkable perceptual ability by children to “work around” abnormal changes in the auditory pathways. Nonetheless, these children rely primarily on interaural level differences as interaural timing cues are more difficult to access or detect. Mismatched levels provided to the two implants could distort interaural level cues thus compromising the benefits of bilateral CI use. We asked whether “balanced” or “centered” perception of bilateral input can be predicted by physiological or behavioral measures. Twenty-four children who had used unilateral CIs for 9.21 ± 2.66 years prior to bilateral implantation participated. “Balanced bilateral levels” were identified by responses occurring with a probability of 50% on the right side of the head and 50% on the left in a two choice lateralization task. Loudness judgments of current presented unilaterally by each implant were measured on a continuous visual scale. Maximum wave eV amplitudes were evoked unilaterally by each implant and matched amplitudes were identified. Balanced bilateral levels were predicted within 10 Clinical Units (CU) in 9 of 13 (69%) children using matched wave eV amplitudes. Bilaterally balanced levels were reasonably predicted by similar loudness judgments (<10% difference between CIs) in only 6 of 13 (46%) children. Results indicate that matching amplitudes of physiological responses can produce a balanced perception of bilateral input despite unilateral strengthening of the auditory pathways and can potentially be used clinically to provide a first approximation of balance/centered levels.
Related Topics
Life Sciences Neuroscience Sensory Systems
Authors
, , ,