Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6287660 | Hearing Research | 2011 | 8 Pages |
Age-related hearing loss is a multi-factorial process involving genetic and environmental factors, including exposure to noise and ototoxic agents, as well as pathological processes. Among these is the accumulation of mitochondrial DNA mutations and deletions. The creation of a transgenic mouse with a loss-of-function deletion of the nuclear gene that encodes the polymerase required to repair damaged mitochondrial DNA (PolgA) enabled evaluation of age-related cochlear pathology associated with random mitochondrial DNA deletions that accrue over the lifespan of the mouse.In comparison with their wild-type or heterozygous counterparts, animals with mutated DNA polymerase gamma developed hearing loss most rapidly. Any loss of mitochondrial DNA polymerase function however, resulted in detrimental effects, as evidenced by hearing tests and histological investigation of transgenic heterozygotes. Cochlear pathology in transgenic animals at 10 months of age included loss of neurons and clumping of surviving neurons in the apical turn of the spiral ganglion. Mitochondrial mutations in young animals, on the other hand, were protective against the development of temporary threshold shift in response to relatively low level noise exposure. This supports the idea that temporary threshold shifts are the result of an active process involving mitochondria and respiratory chain activity. Our results indicate that mitochondrial mutation and deletion can certainly contribute to the development of an aging phenotype, specifically age-related hearing loss.
► Transgenic mice with mtDNA mutations were evaluated for an aged cochlear phenotype. ► Transgenic mice had hearing losses beginning at 6 months. ► Transgenic mice were resistant to acoustic trauma. ► At 10 months neurons at the apex were clumped together in groups of adherent cells. ► mtDNA mutations lead to premature cochlear aging in transgenic mice.