Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6287687 | Hearing Research | 2011 | 10 Pages |
Cat auditory cortex (AC) receives input from many thalamic nuclei and cortical areas. Previous connectional studies often focused on one connectional system in isolation, limiting perspectives on AC computational processes. Here we review the convergent thalamic, commissural, and corticocortical projections to thirteen AC areas in the cat. Each input differs in strength and may thus serve unique roles. We compared the convergent intrinsic and extrinsic input to each area quantitatively. The intrinsic input was almost half the total. Among extrinsic projections, ipsilateral cortical sources contributed 75%, thalamic input contributed 15%, and contralateral sources contributed 10%. The patterns of distribution support the division of AC areas into families of tonotopic, non-tonotopic, multisensory, and limbic-related areas, each with convergent input arising primarily from within its group. The connections within these areal families suggest a form of processing in which convergence of input to an area could enable new forms of integration. In contrast, the lateral connections between families could subserve integration between categorical representations, allowing otherwise independent streams to communicate and thereby coordinating operations over wide spatial and functional scales. These patterns of serial and interfamilial cooperation challenge more classical models of organization that underestimate the diversity and complexity of AC connectivity.