Article ID Journal Published Year Pages File Type
6288140 Research in Microbiology 2010 7 Pages PDF
Abstract

Vegetative cells of Clostridium acetobutylicum are known to reduce hexavalent uranium (U(VI)). We investigated the ability of spores of this organism to drive the same reaction. We found that spores were able to remove U(VI) from solution when H2 was provided as an electron donor and to form a U(IV) precipitate. We tested several environmental conditions and found that spent vegetative cell growth medium was required for the process. Electron microscopy showed the product of reduction to accumulate outside the exosporium. Our results point towards a novel U(VI) reduction mechanism, driven by spores, that is distinct from the thoroughly studied reactions in metal-reducing Proteobacteria.

Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , , ,