Article ID Journal Published Year Pages File Type
6288206 Research in Microbiology 2008 7 Pages PDF
Abstract
Lactobacillus plantarum LA 318 is a potential probiotic strain isolated from normal human intestinal tissue that shows high adhesion to human colonic mucin mediated by the bacterial cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report the adhesion mechanism of the lactobacilli is in part due to GAPDH binding to human ABO-type blood group antigens expressed on human colonic mucin (HCM). After periodate oxidation of HCM, adhesion of L. plantarum LA 318 bacterial cells significantly decreased compared to normal HCM. A BIACORE binding assay of GAPDH to blood group antigens was then performed. High binding was observed to A and B group antigens, while binding to H group antigen was lower (P < 0.01). No interaction was observed between GAPDH and various monosaccharides. Furthermore, GAPDH binding to the B-trisaccharide biotinyl polymer (BP)-probe [Galα1-3 (Fucα1-2) Gal-] was significantly higher as compared to B-disaccharide, Lewis D-trisaccharide, 3-fucosyl-N-acetylglucosamine and α-N-acetylneuraminic acid BP-probes. The data suggests the trisaccharide structure is important in binding to the blood group antigens. The binding of GAPDH to HCM significantly decreased after incubation with NAD+. This suggests that the NAD binding domain on GAPDH may be related to binding to HCM.
Related Topics
Life Sciences Immunology and Microbiology Applied Microbiology and Biotechnology
Authors
, , , , , , , , , , ,