Article ID Journal Published Year Pages File Type
6306105 Chemosphere 2016 11 Pages PDF
Abstract
The present study reports the arsenic (As) tolerance mechanism of bacteria Bacillus aryabhattai (NBRI014). The data explores the intracellular accumulation and volatilization of As from the culture medium after 48 h of exposure to 25,000 mg l−1 arsenate As(V). The study also provides the evidence of presence of ars operon in bacteria, which may have played an important role in reducing As toxicity. Additionally, we found 7 differentially expressed proteins to be up-regulated in bacterial cells upon As exposure which may have role in reducing As toxicity inside bacterial cells. Furthermore, Fourier transform infrared (FTIR) spectroscopic techniques were useful to describe the structural and compositional alterations in bacterial cells after As treatment. It showed the changes in peak positions of the spectrum pattern when NBRI014 was grown in medium containing As, indicating that these functional groups viz. (amino, alkyl halides and hydroxyl) present on bacterial surface, which may be involved in As binding. The above results signify that biotechnological application of the isolate NBRI014 could be helpful in removal of As from polluted sites.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , ,