Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6306454 | Chemosphere | 2017 | 9 Pages |
Abstract
A coagulation-flocculation as pre-treatment combined with mFe/Cu/O3 (CF-mFe/Cu/O3) process was developed to degrade the pollutants in automobile coating wastewater (ACW). In coagulation-flocculation (CF) process, high turbidity removal efficiency (97.1%) and low COD removal efficiency (10.5%) were obtained under the optimal conditions using Al2(SO4)3·18H2O and CaO. The effluent of CF process (ECF) was further disposed by mFe/Cu/O3 process, and its key operating parameters were optimized by batch experiments. Optimally, COD removal efficiency of ECF obtained by the mFe/Cu/O3 process (i.e., 87.6% after 30 min treatment) was much higher than those of mFe/Cu alone (8.3%), ozone alone (46.6%), and mFe/Cu/air (6.1%), which confirms the superiority of the mFe/Cu/O3 process. In addition, the analysis results of UV-vis, excitation-emission matrix (EEM) fluorescence spectra and GC/MS further confirm that the phenol pollutants of ECF had been effectively decomposed or transformed after CF-mFe/Cu/O3 process treatment. Meanwhile, B/C ratio of ACW increased from 0.19 to 0.56, which suggests the biodegradability was improved significantly. Finally, the operating cost of CF-mFe/Cu/O3 process was about 1.83 USD tâ1 for ACW treatment. Therefore, the combined process is a promising treatment technology for the coating wastewater from automobile manufacturing.
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Zhaokun Xiong, Jinyan Cao, Dan Yang, Bo Lai, Ping Yang,