Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6309800 | Chemosphere | 2014 | 8 Pages |
Abstract
Pharmaceuticals are emerging contaminants in the natural environment. Most studies of the environmental fate of these chemicals focus on their behavior in wastewater treatment processes and in sewage sludge. Little is known about their behavior in soils. In this study adsorption and biodegradation of four antidiabetic pharmaceuticals - glimepiride, glibenclamide, gliclazide and metformin - were examined in three natural soils. The sorption of sulfonylurea derivatives was high (higher than sulfonylurea herbicides for example), whereas metformin showed high mobility. Desorption rates were highest for metformin. Sorption isotherms in two of three soils fitted best to the Freundlich model. Despite their high affinity to for soil surfaces, biodegradation studies revealed that transformation of the drugs occurred. Biodegradation results were described by pseudo-first order kinetics with half-life values from 5 to over 120Â d (under aerobic conditions) and indicate that none of the tested drugs can be classified as quickly biodegradable. Biodegradation under anoxic conditions was much slower; often degrading by less than 50% during time of the experiment.
Keywords
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Wojciech Mrozik, Justyna StefaÅska,