Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6310645 | Chemosphere | 2013 | 7 Pages |
Abstract
Cytochrome P450 (CYP) enzymes, especially CYP 3A, are responsible for metabolizing of various kinds of endogenous and exogenous compounds in animals. In the present study, a full-length sequence of CYP 3A137 cDNA in silver carp was cloned and sequenced, and then a phylogenetic tree of CYP 3A was structured. Additionally, the acute toxicity of the ionic liquid 1-octyl-3-methylimidazolium bromide ([C8mim]Br) on silver carp and transcription and microsome enzyme activity of CYP 3A137 in the liver of silver fish after rifampicin or [C8mim]Br exposure were also determined in this study. The results show that the full length of CYP 3A137 cDNA is 1810 base pair (bp) long and contains an open reading frame of 1539 bp encoding a protein of 513 amino acids. Sequence analysis reveals that CYP 3A137 is highly conserved in fish. Moreover, the results of quantitative real-time polymerase chain reaction reveal that CYP 3A137 in silver carp is constitutively expressed in all tissues examined and the sequence of expression rate is liver > intestine > kidney > spleen > brain > heart > muscle. Finally, the results of acute toxicity tests indicate that both rifampicin and [C8mim]Br significantly up-regulate the expression of CYP 3A137 at mRNA level and increase CYP 3A137 enzyme activity in fish liver, suggesting that CYP 3A137 be involved in metabolism of [C8mim]Br in silver carp.
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Xiaoyu Li, Junguo Ma, Wenlong Lei, Jie Li, Yaning Zhang, Yuanlong Li,