Article ID Journal Published Year Pages File Type
6311292 Chemosphere 2012 9 Pages PDF
Abstract

Chronic toxicity of acetaminophen and lincomycin were evaluated using freshwater organisms including two crustaceans (Daphnia magna and Moina macrocopa) and a fish (Oryzias latipes). H295R, a human adrenal cell was also used to understand the effects on steroidogenesis. In 21 d D. magna exposure, survival NOEC was found at 5.72 mg L−1 and no reproduction related effects were noted at this level of exposure to acetaminophen, while 21 d survival or growth effects were not observed even at the highest exposure levels (153 mg L−1) for lincomycin. In the chronic fish toxicity test, significant reduction in juvenile survival was observed at 30 d post-hatch (dph) at 95 mg L−1 of acetaminophen, and 0.42 mg L−1 of lincomycin. After the exposure to both pharmaceuticals, vitellogenin levels tended to increase in male fish at 90 dph. In the eggs which were prenatally exposed to 9.5 mg L−1 of acetaminophen, reduced hatchability was observed. The results of H295R cell assay showed that both pharmaceuticals could alter steroidogenic pathway and increase estrogenicity. Endocrine disruption potentials and their ecological implication may deserve further studies. Our observations suggest however that ecological risks of both pharmaceuticals are negligible at the concentrations currently found in the environment.

► Chronic exposure affected survival of fish at levels much higher than environment. ► Vitellogenesis appeared to be enhanced by the exposure to both pharmaceuticals. ► Prenatal exposure to acetaminophen could reduce hatching success of the eggs. ► Both pharmaceuticals could increase estrogenicity by effects on steroidogenesis.

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , , , , ,