Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6311887 | Chemosphere | 2011 | 6 Pages |
Abstract
We examined the effects of the ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], N-ethylpyridinium tetrafluoroborate [EtPy][BF4], and N-ethylpyridinium trifluoroacetate [EtPy][CF3COO] on Pseudomonas fluorescens, a ubiquitous soil bacterium. In the presence of 0.5- and 1% of [BMIM][PF6] or [EtPy][CF3COO] the growth of bacteria was inhibited, whereas exposing them to 1% [EtPy][BF4] increased the lag period wherein bacteria adapt to growth conditions before continuing to grow. However, at higher concentrations (5% and 10%), no growth was observed. The inhibitory effects were evident by a decrease in the optical density of the culture, a decline in the consumption of the carbon source, citric acid, and a change in the size of the bacterium. At concentrations below 1%, [EtPy][BF4] was metabolized by P. fluorescens in the presence of citric acid. Oxidation of the side alkyl-chain of [EtPy][BF4] caused the accumulation of N-hydroxylethylpyridinium and pyridinium as major degradation products.
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
C. Zhang, S.V. Malhotra, A.J. Francis,