Article ID Journal Published Year Pages File Type
6312236 Ecotoxicology and Environmental Safety 2014 5 Pages PDF
Abstract
Increased endogenous plant cytokinin (CK) content through transformation with an isopentyl transferase (ipt) gene has been associated with improved plant stress tolerance. The objective of this study is to determine amino acid changes associated with elevated CK production in ipt transgenic tobacco (Nicotiana tabacum L., cv. Wisconsin 38). Nontransformed (WT) and transformed tobacco plants with ipt gene controlled by senescence-activated promoter (SAG) were exposed to zinc soil contamination (tested levels Zn1=250, Zn2=500, Zn3=750 mg kg−1 soil). The Zn effect on plant stress metabolism resulted in changes in levels of selected free amino acids playing an important role in adaptation to stress and plant senescence (alanine, leucine, proline, methionine and γ-aminobutyrate) and differed for transformed and nontransformed tobacco plants. Analyses of amino acids confirmed that SAG tobacco plants had improved zinc tolerance compared with the WT plants. The enhanced Zn tolerance of SAG plants was associated with the maintenance of accumulation of proline, methionine and γ-aminobutyrate. The concentrations of leucine and alanine did not show significant differences between plant lines.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,