Article ID Journal Published Year Pages File Type
6312468 Ecotoxicology and Environmental Safety 2011 9 Pages PDF
Abstract
The possible use of chemical concentrations measured in mussels (Mytillus galloprovincialis) for compliance checking against Environmental Quality Standards (EQS) established for biota is analyzed with the help of an integrated model. The model consists of a 3D planktonic module that provides biomasses in the different compartments, i.e., phytoplankton, zooplankton and bacteria; a 3D fate module that provides the concentrations of contaminants in the water column and in the sediments; and a 3D bioaccumulation module that calculates internal concentrations in relevant biotic compartments. These modules feed a 0D growth and bioaccumulation module for mussels, based on the Dynamic Energy Budget (DEB) approach. The integrated model has been applied to study the bioaccumulation of persistent organic pollutants (POPs) in the Thau lagoon (France). The model correctly predicts the concentrations of polychlorinated biphenyls (PCBs) and polychlorinated dibenzodioxins and dibenzofurans (PCDD/Fs) in mussels as a function of the concentrations in the water column and in phytoplankton. It also sheds light on the origin of the complexity associated with the use of EQS for biota and their conversion to water column concentrations. The integrated model is potentially useful for regulatory purposes, for example in the context of the European Water Framework (WFD) and Marine Strategy Framework Directives (MSFD).
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,