Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6316748 | Environmental Pollution | 2015 | 7 Pages |
Abstract
Climate projections over the next century include disproportionately warmer nighttime temperatures (“asymmetrical warming”). Cool nighttime temperatures lower metabolic rates of aquatic ectotherms. In contaminated waters, areas with cool nights may provide thermal refugia from high rates of daytime contaminant uptake. We exposed Cope's gray tree frogs (Hyla chrysoscelis), southern leopard frogs (Lithobates sphenocephalus), and spotted salamanders (Ambystoma maculatum) to five concentrations of a mixture of cadmium, copper, and lead under three to four temperature regimes, representing asymmetrical warming. At concentrations with intermediate toxicosis at test termination (96 h), temperature effects on acute toxicity or escape distance were evident in all study species. Asymmetrical warming (day:night, 22:20 °C; 22:22 °C) doubled or tripled mortality relative to overall cooler temperatures (20:20 °C) or cool nights (22:18 °C). Escape distances were 40-70% shorter under asymmetrical warming. Results suggest potentially grave ecological impacts from unexpected toxicosis under climate change.
Keywords
Related Topics
Life Sciences
Environmental Science
Environmental Chemistry
Authors
Tyler A. Hallman, Marjorie L. Brooks,