Article ID Journal Published Year Pages File Type
632231 Journal of Membrane Science 2016 41 Pages PDF
Abstract
Most perovskites possessing high oxygen permeability always suffer from low chemical stability under CO2-containing conditions. A comprehensive knowledge for improving the resistance toward CO2 through doping strategy is still lacking. In this work, we propose a series of perovskite oxides, i.e., SrFe0.8M0.2O3−δ (M=Ti4+, Nb5+, and Cr6+), and systematically investigate the effect of dopants with the high oxidation state on the phase structure, chemical stability, sintering behavior, conducting properties, and oxygen permeability. The oxygen permeability and the CO2 tolerance of the membranes are closely related to the oxidation state of the dopants for altering the oxygen vacancy concentration, the oxidation state of Fe ions and the average metal-oxygen bond energy. The balance of oxygen permeability and the CO2 tolerance should be taken into account during practical application. This work thus provides useful guidelines for the future development of perovskite oxides through B-site doping for efficient air separation.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , ,