Article ID Journal Published Year Pages File Type
632303 Journal of Membrane Science 2016 14 Pages PDF
Abstract
Dissipative particle dynamics (DPD) simulation was performed to construct the mesophase membrane morphologies of poly(4-methyl-1-pentene) (PMP) during thermally induced phase separation (TIPS). The PMP morphologies and their fluid diffusivities relationship was established using a mesoscale 3-D tetragonal-like structure construction. The effects of PMP concentration and the use of a single diluent (dioctyl phthalate, diphenyl ether, and dibutyl phthalate) or a mixed diluent on the pore morphology were compared. The diffusivity resistance was evaluated by comparing the mean square displacement of a hypothetical fluid bead through tetragonal-like morphologies in three normal directions. The 3-D morphology and density profile results revealed that larger pores were produced after TIPS when the PMP-diluent interaction was weaker. Radial distribution function analysis showed that poor diluent and high PMP concentration could form a coarsened structure with less interconnectivity, indicating more diffusion resistance. To verify DPD simulation results, PMP hollow fibre membranes (HFMs) were fabricated via TIPS, and HFM cross-sectional morphologies proved that the pore structures agreed with the DPD-simulation 3-D evolution diagram. The structure-fluid diffusivity resistance relationship was also confirmed by porosity measurements and gas permeation testing. The DPD simulation method is promising for the fabrication and design of gas-diffusive membranes, especially in terms of the rational selection of diluent and polymer concentration.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , , , , ,