Article ID Journal Published Year Pages File Type
632576 Journal of Membrane Science 2016 10 Pages PDF
Abstract

•Amino acid ionic liquids (AAILs) with high amino group density were synthesized.•A design guideline of AAILs for high CO2 permeative membrane was proposed.•Reducing molecular size of AAILs were effective to enhance the CO2 absorption amount.•CO2 absorbability of AAILs was enhanced by introducing an amino group in the cation.•The synthesized AAIL-based membranes showed high CO2 permeability and selectivity.

Amino acid ionic liquids (AAILs) composed of different sizes and numbers of amino groups, including tetrabutylammonium glycinate, tetramethylammonium glycinate, and 1,1,1-trimethylhydrazinium glycinate, were synthesized as CO2 carriers for facilitated transport membranes. The physical properties of the fabricated AAILs, such as density, viscosity, and N2 and CO2 absorption capacities, were measured, and the fractional free volume was calculated using molecular dynamics (MD) simulations. The results showed that the molar and fractional free volumes decreased with decreasing AAIL size, which caused increased CO2 absorption and decreased N2 absorption. In addition, the CO2 absorption increased with higher numbers of amino groups in the AAILs. The gas permeation properties of facilitated transport membranes containing the synthesized AAILs were investigated. The small AAILs with two amino groups showed better CO2 permeability and N2 barrier properties under humid conditions. We propose that ionic liquids optimized as CO2 carriers for facilitated transport membranes under humid conditions should have high amino-group density, which could be realized by decreasing the molecular size and introducing more amino groups in the molecule.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (374 K)Download as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , , ,