Article ID Journal Published Year Pages File Type
6326635 Science of The Total Environment 2015 10 Pages PDF
Abstract

•Emissions from steelworks are very complex.•The larger steelworks contribution to PM10 was from blast furnace and sinter plant.•Sinter plant stack emissions contributed for 12% of the PM10 mass.•Secondary aerosol from coke making and blast furnace contributed for 19% of the PM10.•Fugitive dust emissions highly contribute to PM10 mass.

The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM2.5 and PM2.5-10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM10. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH4+, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%).

Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , , ,