Article ID Journal Published Year Pages File Type
6327434 Science of The Total Environment 2015 9 Pages PDF
Abstract
Critical loads (CLs) and dynamic critical loads (DCLs) are important tools to guide the protection of ecosystems from air pollution. In order to quantify decreases in acidic deposition necessary to protect sensitive aquatic species, we calculated CLs and DCLs of sulfate (SO42 −) + nitrate (NO3−) for 20 lake-watersheds from the Adirondack region of New York using the dynamic model, PnET-BGC. We evaluated lake water chemistry and fish and total zooplankton species richness in response to historical acidic deposition and under future deposition scenarios. The model performed well in simulating measured chemistry of Adirondack lakes. Current deposition of SO42 − + NO3−, calcium (Ca2 +) weathering rate and lake acid neutralizing capacity (ANC) in 1850 were related to the extent of historical acidification (1850-2008). Changes in lake Al3 + concentrations since the onset of acidic deposition were also related to Ca2 + weathering rate and ANC in 1850. Lake ANC and fish and total zooplankton species richness were projected to increase under hypothetical decreases in future deposition. However, model projections suggest that lake ecosystems will not achieve complete chemical and biological recovery in the future.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,