Article ID Journal Published Year Pages File Type
632889 Journal of Membrane Science 2015 9 Pages PDF
Abstract
In this study, a continuous and single-step fingering inducing phase-inversion process for fabricating micro-structured alumina multi-channel capillary tubes and monoliths, which consist of a plurality of radial micro-channels, has been developed. In addition to the geometrical similarity to conventional ceramic monoliths, the unique radial micro-channels created in the walls of the multi-channel capillary tubes (or monoliths) can reduce mass transfer resistance and increase surface area, which are critically important factors for filtration and catalytic reactions. Furthermore, the enlarged cross section area of the multi-channel configuration enhances the resistance to external impacts. The technique described in this study not only can be scaled up for fabricating monoliths of commercial sizes, but can also be scaled down to make multi-channel capillary tubes, solving the issue of insufficient mechanical property in current ceramic hollow fibres.
Related Topics
Physical Sciences and Engineering Chemical Engineering Filtration and Separation
Authors
, , , ,