Article ID Journal Published Year Pages File Type
6330831 Science of The Total Environment 2014 8 Pages PDF
Abstract
The results showed that oxygenation led to a steep increase in the rate of decomposition, indicated by higher carbon loss rates during and after oxygenation compared to non-oxygenated samples. Carbon loss rates increased more for eutrophic peat (agricultural area: 352%, nature reserve: 182%) than for oligotrophic peat (83% and 159% respectively). Most peat samples investigated showed higher post-oxygenation CO2 and/or CH4 production compared to the anoxic pre-oxygenation period. This indicates that oxygenation stimulates decomposition, even after anoxic conditions have returned. Contrary to the enzymic latch theory, no effects of oxygenation on the concentrations of soluble or condensed phenolic compounds were detected. Soluble nutrient concentrations did not change due to oxygenation either. Noteworthy is the occurrence of pyrite mineralization and associated acidification in eutrophic peat. Thus, low summer water levels, for example due to climate change, should be avoided in order to limit exceptionally high decomposition rates and associated problems such as increasing subsidence rates, greenhouse gas emission, sulfate release and acidification.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , ,