Article ID Journal Published Year Pages File Type
6331378 Science of The Total Environment 2014 15 Pages PDF
Abstract
In the context of current global environmental changes, mapping and monitoring seagrass meadows have become highly important for management and preservation of coastal zone ecosystems. The purpose of this research was to determine the numerical precision of various cost-effective benthic habitat mapping techniques and their suitability for mapping and monitoring of Posidonia oceanica meadows in the Croatian Adriatic. We selected ultra-high resolution aerial imagery, single-beam echo sounder (SBES) seabed classification system from Quester Tangent Co. (QTC), and surface based underwater videography as affordable, non-destructive and simple to use systems for data acquisition. The ultra-high resolution digital imagery was capable of detecting P. oceanica meadows up to 4 m depth with 94% accuracy, from 4 m to 12.5 m depth the accuracy dropped to app. 76%, and from 12.5 to 20 m the system was only capable of distinguishing seabed biota from substrata, though with 97% accuracy. The results of the QTC system showed over 90% detection accuracy for Cymodocea nodosa covered seabed, excellent separation capabilities (> 92%) of different sediment types (slightly gravelly sand, gravelly muddy sand and slightly gravelly muddy sand) and reasonable accuracy for mapping underwater vegetation regardless of the bathymetric span. The system proved incapable of separating P. oceanica from dense macroalgae on the same type of substratum. Surface-based underwater videography demonstrated great potential for estimating P. oceanica cover in a sampled region using either a single human rater or a computer estimate. The consistency between two human scorers in evaluating P. oceanica bottom coverage was near perfect (> 98%) and high between digital and human scorers (80%). The results indicate that although the selected systems are suitable for mapping seagrasses, they all display limitations in either detection accuracy or spatial coverage, which leads to a conclusion that suitable system integration is essential for producing high quality seagrass spatial distribution maps.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, , , , ,