Article ID Journal Published Year Pages File Type
6331847 Science of The Total Environment 2013 9 Pages PDF
Abstract
Biomarkers are required to assess the biological effects of pollutants on marine organisms in order to monitor ecosystem status, but their use is often limited by their strong variability due to environmental and/or intrinsic biological factors. Accordingly, the main aim of this work was to set up practical procedures for a battery of widely used biomarkers in mussels (Mytilus galloprovincialis). Antioxidant enzymes (catalase [CAT] and glutathione peroxidase [GPx]), a phase II detoxification enzyme (glutathione S-transferase [GST]) and a neurotransmitter catabolism enzyme (acetylcholinesterase [AChE]), were considered. Several relevant aspects were studied in order to obtain a more realistic interpretation of biomarker responses, including the calculation of the minimum sample size required to estimate the population mean with a fixed error margin, the selection of the specific organ or tissue where the enzymatic activity is higher for each biomarker, and the influence of tidal height and temperature on the basal enzymatic activity. GST and CAT activities needed a minimum sample size of 12, whereas for GPx and AChE activities a minimum sample size of 14 was required. The gills were the organ with higher GST, GPx and AChE enzymatic activities, whereas the digestive gland showed the highest CAT activity. Also, the low inter-tidal was the recommended tide level whilst no significant effect of temperature was observed on GST, GPx and CAT, and no clear pattern could be identified for AChE. The implications for environmental monitoring are discussed.
Related Topics
Life Sciences Environmental Science Environmental Chemistry
Authors
, ,