Article ID Journal Published Year Pages File Type
6334815 Applied Geochemistry 2016 48 Pages PDF
Abstract
Multi-biomarkers were characterized in surface soils with different vegetation during an annual cycle in Oregon, U.S.A., to study the composition and dynamics of soil organic matter (SOM). The major compound classes identified include saccharides, steroids, terpenoids, and homologous series of aliphatic lipids (n-alkanoic acids, n-alkanols, and n-alkanes). Saccharides, n-alkanoic acids, and sterols were the most dominant compound groups identified in Ryegrass field soils, whereas n-alkanoic acids, n-alkanols, and sterols were dominant in soils under conifer and deciduous vegetation. Plant species, instead of microbial organisms, was found to be the primary source influencing the concentration and distribution of the major biomarker tracers in the studied surface soils. Over an annual cycle, concentrations of higher plant lipids such as monoacyl glycerides, sterols, n-alkanoic acids and total wax were higher during summer (especially June-August). During fall into winter, the concentrations of all compounds decreased to steady state levels due to cessation of de novo synthesis and concomitant biodegradation and remineralization of detritus. Sucrose and glucose reached maximum concentrations during spring (especially March-May), which could be related with plant growth, especially rootlets in the soils. Mycose, the microbial/fungal metabolite, maximized during late summer, suggesting the concomitant increase of microbial/fungal activity with the increasing primary production. The composition and variation of biomarkers observed over an annual cycle improved our understanding of SOM dynamics in temperate soils, which could also be linked to regional and global carbon cycles.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geochemistry and Petrology
Authors
, , , , , ,