Article ID Journal Published Year Pages File Type
6335630 Atmospheric Environment 2016 28 Pages PDF
Abstract
To determine the causes of a severe haze episode in January 2013 in China, a source apportionment of different carbonaceous aerosols (CAs) was conducted in a megacity in central China (Wuhan, Hubei Province) by using the measurements of radiocarbon and molecular organic tracers. Non-fossil sources (e.g., domestic biofuel combustion and biogenic emissions) were found to be responsible for 62% ± 5% and 26% ± 8% of organic carbon (OC) and elemental carbon (EC) components by mass, respectively. Non-fossil sources contributed 57% ± 4% to total CAs in this large-scale haze event, whereas fossil-fuel sources were less dominant (43% ± 4%). The CAs were composed of secondary organic carbon (SOC; 46% ± 10%), primary fossil-fuel carbon (29% ± 4%) and primary biomass-burning carbon (25% ± 10%). Although SOC was formed mainly from non-fossil sources (70% ± 4%), the role of fossil precursors was substantial (30% ± 4%), much higher than at the global scale. Combined measurement of organic tracers and radiocarbon showed that most non-fossil SOC was probably derived from biomass burning during this long-lasting haze episode in central China.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , , , , , , , , , , ,