Article ID Journal Published Year Pages File Type
6337404 Atmospheric Environment 2015 5 Pages PDF
Abstract

•Stability of polycyclic aromatic compounds (PACs) on PUF disks is evaluated.•Flow tube chamber was used to simulate 2 months exposure to O3.•Some degradation of PAHs occurred under low relative humidity (RH).•The majority of the PACs were stable upon O3 exposure at 50% RH.•PUF disk sampler is validated for measuring PACs in air under typical conditions.

Stability of polycyclic aromatic compounds (PACs) in polyurethane foam (PUF) disks upon O3 exposure was studied in a flow tube. A wide range of PACs was evaluated by spiking PUF disks with PACs and exposing to O3 at concentrations that were equivalent to two months exposure, a typical deployment period for these passive air samplers. Ambient concentrations of O3 (∼50 ppb) at 0% and 50% relative humidity (RH) were applied. At 0% RH, 23 of 68 PACs yielded more than 50% loss after exposure. The mean percent loss was 30% with perylene and 9,10-dimethylanthracene the most reactive polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs, respectively. At 50% RH, 77% of the studied PACs was stable upon O3 exposure (PACexposed/PACunexposed > 0.7). The mean percent loss was 17% and only 7 of 68 PACs yielded greater than 50% loss. In general, the reactivity of most of the PACs decreased at higher RH, except for the reactive PAHs (acenaphthylene, 2,3-dimethylanthracene, 9,10-dimethylanthracene, dibenzothiophene, and 2-methyldibenzothiophene) which demonstrated lower RH dependence. The experimental conditions in this study represent a worst case scenario for the stability of PACs sorbed to PUF. In reality, the sampling of PACs in ambient air represents an 'aged' component of PACs where the most reactive species have already partially been removed. Also, PACs in ambient air will be associated with the particle phase to varying extents that will help to enhance their stability. Therefore, under regular operating conditions, over a 2-month exposure, we expect a minimal error in the measurement of total concentration of PACs in air using the PUF disk passive sampler.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , ,