Article ID Journal Published Year Pages File Type
6337539 Atmospheric Environment 2015 10 Pages PDF
Abstract

•The Tibetan Plateau is subject to heavy loading of dusts during summer.•Cold advection or front and low-pressure system contribute to the dust emission.•Meteorological conditions and the topography benefit dust transport to the TP.•The 'elevated heat pump' help transport dust vertically over the TP.

Satellite observational evidences (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, CALIPSO) have presented that the Tibetan Plateau (TP) is subject to heavy loading of dust aerosols during summer. Combining back trajectory and weather system analyses, the source and transportation of summer Tibetan dust from 2007 to 2014 were investigated. The Tibetan dust is mainly from the Taklimakan Desert and partially from the Gurbantunggut Desert and Great Indian Thar Desert. Case study indicates that the meteorological conditions together with the topography benefit the dust emission adjacent to the TP and the transport toward the plateau. When a cold advection or front developed by strong cold advection passes, dust particles are emitted into the atmosphere from the Taklimakan and Gurbantunggut deserts and then transported to the northern slope of the TP with northeasterly wind induced by the Altai and Tian Shan mountains. For the period from 2007 to 2014, the correlation coefficient of the monthly frequencies of summer dust events over the TP and cold advection passing the Taklimakan and Gurbantunggut deserts were as high as 0.68 and 0.34, respectively. Differently, although the correlation is limited, much TP dust mobilized from the Great Indian Thar Desert is associated with the passing low-pressure system activity and generally polluted by anthropogenic aerosols. The polluted dust is further transported to the southern slope of the TP by the prevailing westerly wind. Investigations on the source and transportation of summer dust over the TP provide a solid foundation of data that can be used to reveal the role of TP dust in the radiation balance, hydrological cycle, and monsoon cycle in India and East Asia.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , ,