Article ID Journal Published Year Pages File Type
6339090 Atmospheric Environment 2014 13 Pages PDF
Abstract
A multi-method approach estimating summer waste heat emissions from anthropogenic activities (QF) was applied for a major subtropical city (Phoenix, AZ). These included detailed, quality-controlled inventories of city-wide population density and traffic counts to estimate waste heat emissions from population and vehicular sources respectively, and also included waste heat simulations derived from urban electrical consumption generated by a coupled building energy - regional climate model (WRF-BEM + BEP). These component QF data were subsequently summed and mapped through Geographic Information Systems techniques to enable analysis over local (i.e. census-tract) and regional (i.e. metropolitan area) scales. Through this approach, local mean daily QF estimates compared reasonably versus (1.) observed daily surface energy balance residuals from an eddy covariance tower sited within a residential area and (2.) estimates from inventory methods employed in a prior study, with improved sensitivity to temperature and precipitation variations. Regional analysis indicates substantial variations in both mean and maximum daily QF, which varied with urban land use type. Average regional daily QF was ∼13 W m−2 for the summer period. Temporal analyses also indicated notable differences using this approach with previous estimates of QF in Phoenix over different land uses, with much larger peak fluxes averaging ∼50 W m−2 occurring in commercial or industrial areas during late summer afternoons. The spatio-temporal analysis of QF also suggests that it may influence the form and intensity of the Phoenix urban heat island, specifically through additional early evening heat input, and by modifying the urban boundary layer structure through increased turbulence.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , ,