Article ID Journal Published Year Pages File Type
6339154 Atmospheric Environment 2014 32 Pages PDF
Abstract
In this method, the aerosol average mass extinction efficiency (αext) is used to describe the general hygroscopic growth behaviors of the total aerosol populations. The association between αext and RH is obtained through empirical model fitting, and is then applied to carry out RH correction. Nearly one year of in-situ measurements of VIS, RH and PM10 in Beijing urban area are collected for this study and RH correction is made for each of the months with sufficient data samples. The correlations between aerosol extinction coefficients and PM10 concentrations are significantly improved, with the monthly correlation R2 increasing from 0.26-0.63 to 0.49-0.82, as well as the whole dataset's R2 increasing from 0.36 to 0.68. PM10 concentrations are retrieved through RH correction and validated for each season individually. Good agreements between the retrieved and observed PM10 concentrations are found in all seasons, with R2 ranging from 0.54 in spring to 0.73 in fall, and the mean relative errors ranging from −2.5% in winter to −10.8% in spring. Based on the satellite AOD and the model simulated aerosol profiles, surface PM10 over Beijing area is retrieved through the RH correction. The satellite retrieved PM10 and those observed at ground sites agree well with each other, with R2 = 0.46 and a relative error of 19.3%.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , ,