Article ID Journal Published Year Pages File Type
6339212 Atmospheric Environment 2014 10 Pages PDF
Abstract
Horizontal visibility measured at ground meteorological stations provides an under-exploited source of information for studying the interdecadal variation of aerosols and their climatic impacts. Here we propose to use a 3-hourly visibility dataset to infer aerosol optical depth (AOD) over East China, using the nested GEOS-Chem chemical transport model to interpret the spatiotemporally varying relations between columnar and near-surface aerosols. Our analysis is focused in 2006 under cloud-free conditions. We evaluate the visibility-inferred AOD using MODIS/Terra and MODIS/Aqua AOD datasets, after validating MODIS data against three ground AOD measurement networks (AERONET, CARSNET and CSHNET). We find that the two MODIS datasets agree with ground-based AOD measurements, with negative mean biases of 0.05-0.08 and Reduced Major Axis regression slopes around unity. Visibility-inferred AOD roughly capture the general spatiotemporal patterns of the two MODIS datasets with negligible mean differences. The inferred AOD reproduce the seasonal variability (correlation exceeds 0.9) and the slight AOD growth from the late morning to early afternoon shown in the MODIS datasets, suggesting the validity of our AOD inference method. Future research will extend the visibility-based AOD inference to study the long-term variability of AOD.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , ,