Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6339239 | Atmospheric Environment | 2014 | 11 Pages |
Abstract
A comprehensive study has been carried out on tropospheric carbon monoxide (CO) over the Indian land mass and surrounding oceanic region using the CO retrievals from MOPITT (Measurements of Pollution in the Troposphere) for a period of â¼14 years (2000-2014). The lower-tropospheric CO maximises during winter and shows a broad minimum during summer-monsoon over most of the regions, but with regionally varying seasonal amplitudes. Tropospheric column CO also exhibits a seasonal pattern similar to lower-tropospheric CO. But the upper-tropospheric CO shows an opposite seasonal pattern which peaks during summer monsoon. Columnar CO showed strong positive correlation with fire counts over west, east and north-east India, indicating the dominant role of biomass burning in controlling the seasonal variation of CO. The lower-tropospheric and columnar CO showed decreasing trend of 2.0-3.4 ppb yearâ1 (1.1-2.0% yearâ1) and 6.0-13.6 Ã 1015 molecules cmâ2 yearâ1 (0.3-0.6% yearâ1) respectively over most of the regions. However, over many land regions trend in columnar CO is not significant. Most strikingly, the upper tropospheric CO showed increasing trend of 1.4-2.4 ppb yearâ1 (1.8-3.2% yearâ1). The analysis of biases in the estimated trends due to temporal changes in the MOPITT averaging kernels shows that magnitude of the realistic trend may change depending upon the bias but the sign (positive or negative) of trend remains the same. The decreasing trend in lower tropospheric and columnar CO could be attributed partly to increase in lower tropospheric water vapour and/or tropospheric ozone. The strengthening of convective activity, uplifting the CO to higher altitudes, could be a reason for increasing trend in the upper-tropospheric CO.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Atmospheric Science
Authors
I.A. Girach, Prabha R. Nair,