Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6339448 | Atmospheric Environment | 2014 | 9 Pages |
Abstract
For the simultaneous analysis of short- and long-term effects of air pollution in the Heinz Nixdorf Recall Cohort a sophisticated exposure modelling was performed. The dispersion and chemistry transport model EURAD (European Air Pollution Dispersion) was used for the estimation of hourly concentrations of a number of pollutants for a horizontal grid with a cell size of 1 km² covering the whole study area (three large adjacent cities in a highly urbanized region in Western Germany) for the years 2000-2003 and 2006-2008. For each 1 km² cell we estimated the mean concentration by calculating daily means from the hourly concentrations modelled by the EURAD process. The modelled concentrations showed an overall tendency to decrease from 2001 to 2008 whereas the trend in the single grid cells and study period was inhomogeneous. Participant-related exposure slightly increased from 2001 to 2003 followed by a decrease from 2006 to 2008. The exposure modelling enables a very flexible exposure assessment compared to conventional modelling approaches which either use central monitoring or temporally static spatial contrasts. The modelling allows the calculation of an average exposure concentration for any place and time within the study region and study period with a high spatial and temporal resolution. This is important for the assessment of short-, medium and long-term effects of air pollution on human health in epidemiological studies.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Atmospheric Science
Authors
Michael Nonnemacher, Hermann Jakobs, Anja Viehmann, Irene Vanberg, Christoph Kessler, Susanne Moebus, Stefan Möhlenkamp, Raimund Erbel, Barbara Hoffmann, Michael Memmesheimer,