Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6339521 | Atmospheric Environment | 2014 | 10 Pages |
Abstract
Mixing ratios and fluxes of volatile organic compounds (VOCs) were measured by PTR-MS (and GC-MS) and virtual disjunct eddy covariance during a three-week field campaign in summer 2009 within and above a Douglas fir (Pseudotsuga menziesii) forest in Speulderbos, the Netherlands. Measurements included the first non-terpenoid species fluxes and mixing ratios for Douglas fir canopy. Above-canopy emissions of monoterpenes were comparable to previous studies of P. menziesii, with estimated standard emission factors for the first and second halves of the campaign of 0.8 ± 0.4 and 0.8 ± 0.3 μg gdwâ1 hâ1, and temperature coefficients of 0.19 ± 0.06 and 0.08 ± 0.05 °Câ1, respectively. Estimated isoprene standard emission factors for the two halves of the campaign were 0.09 ± 0.12 and 0.16 ± 0.18 μg gdwâ1 hâ1. Fluxes of several non-terpenoid VOCs were significant, with maximum fluxes greater than has been measured for other coniferous species. α-Pinene was the dominant monoterpene within and above the canopy. Within-canopy mixing ratios of individual species were generally greatest in early evening consistent with reduced vertical mixing and continued temperature-dependent emissions. Acetaldehyde, acetone and monoterpenes had elevated mixing ratios toward the bottom of the canopy (5-10 m) with assumed contribution from the large quantities of forest-floor leaf litter. MBO (2-methyl-3-buten-2-ol) and estragole had peak mixing ratios at the top of the canopy and are known to have coniferous sources. MVK + MACR (methyl vinyl ketone and methacrolein) also had highest mixing ratios at the top of the canopy consistent with formation from in-canopy oxidation of isoprene. The work highlights the importance of quantifying a wider variety of VOCs from biogenic sources than isoprene and monoterpenes.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Atmospheric Science
Authors
Nichola Copeland, J. Neil Cape, Eiko Nemitz, Mathew R. Heal,