Article ID Journal Published Year Pages File Type
6340866 Atmospheric Environment 2014 9 Pages PDF
Abstract
A generalized additive model (GAM) is used to examine the influence of meteorological factors, nitrogen oxides (NOx = NO + NO2), and non-methane hydrocarbons (NMOC) on daily peak 8-h ozone (O3) concentrations. Application to 2002-2011 monitoring data from the Southeastern Aerosol Research and Characterization (SEARCH) program showed sensitivity of peak 8-h O3 to morning concentrations of nitric oxide (NO) and nitrogen dioxide (NO2) and to afternoon concentrations of NO2 reaction products (NOz). Peak O3 decreased with increasing NO and increased with increasing NO2 concentrations, consistent with reactions involving O3, NO, and NO2. Ozone production efficiency (OPE), estimated from the modeled relation between peak 8-h O3 and afternoon NOz, was ∼40-100 percent higher at rural compared to urban sites. OPE was nonlinear at all sites, decreasing with increasing NOz concentration. The mean ratio of NOz/NOy showed a two-fold increase from urban to rural sites, associated with chemical aging in stagnant air masses from one day (urban sites) to two or more days (non-urban sites). Peak 8-h O3 concentrations in Atlanta were sensitive to concentrations of both non-biogenic NMOC and NOz. Non-urban Yorkville, Georgia, peak 8-h O3 concentrations were sensitive to NOz but not to non-biogenic NMOC concentrations. The results are consistent with expected NMOC and NOx sensitivity in urban and non-urban locales.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , ,