Article ID Journal Published Year Pages File Type
6343355 Atmospheric Research 2015 14 Pages PDF
Abstract
The progress in data assimilation techniques that incorporate weather observations into high-resolution numerical weather prediction models is challenging because of handling surface data in terrain misrepresentation, balance approximations, instrument errors and sensor representativeness. In the framework of operational numerical weather prediction, two data assimilation systems are compared using conventional observations from surface Automatic Weather Stations (AWS), a three-dimensional variational analysis (3DVAR) and the Local Analysis and Prediction System (LAPS). The goal is to study the ability of these two systems to assimilate data from AWS and to assess which performs better for near-surface wind and temperature fields to initialize a short-range 1-km resolution forecast with the Weather Research and Forecasting (WRF) model. Results show that the 3DVAR assimilation patterns are unrealistic given the inhomogeneous nature of the near-surface fields in complex terrains. In contrast, LAPS analyses show a heterogeneous assimilation pattern, more consistent with the complexity of the terrain and the observations. During the model spin-up period, simulations initialized using both data assimilation methods approach rapidly the control simulation, initialized without assimilation. However, the 1 km resolution forecasts initialized with LAPS exhibit a significant improvement, particularly for the wind field module.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , ,