Article ID Journal Published Year Pages File Type
6343370 Atmospheric Research 2015 10 Pages PDF
Abstract
High resolution numerical simulations are used to study the structure of the cloud edge area. We consider an aerosol distribution function with a similar aerosol core size (12 nm). The aerosol composition is assumed to be water soluble NaCl. Depending on the specific conditions in the investigated cloud edge area, water is evaporated or activated from the aerosol surface. We use a publicly available high order domain code for direct numerical simulation (DNS) in combination with the Smagorinsky subgrid scale model. We compare 2D and 3D model results of turbulent air motion of aerosol particles with varying grid cell sizes. We show that a 2D model with high resolution gives a more realistic number of activated particles than the corresponding 3D model with lower resolution. We also study the effects of aerosol dynamics on turbulent fields and show that water vapor condensation and evaporation have significant effects on temperature and supersaturation fields.
Keywords
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Atmospheric Science
Authors
, , , , , ,