Article ID Journal Published Year Pages File Type
6344594 Journal of Geochemical Exploration 2016 36 Pages PDF
Abstract
Through stratified 10-fold cross validation we find the accuracy of quantile regression forests in predicting soil geochemistry in south west England to be a general improvement over that offered by ordinary kriging. Concentrations of immobile elements whose distributions are most tightly controlled by bedrock lithology are predicted with the greatest accuracy (e.g. Al with a cross-validated R2 of 0.79), while concentrations of more mobile elements prove harder to predict. In addition to providing a high level of prediction accuracy, models built on high resolution auxiliary variables allow for informative, process based, interpretations to be made. In conclusion, this study has highlighted the ability to map and understand the surface environment with greater accuracy and detail than previously possible by combining information from multiple datasets. As the quality and coverage of remote sensing and geophysical surveys continue to improve, machine learning methods will provide a means to interpret the otherwise-uninterpretable.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Economic Geology
Authors
, , , , ,