Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6345212 | Remote Sensing of Environment | 2016 | 12 Pages |
Abstract
Within the framework of the efforts of the European Space Agency (ESA) to develop the most consistent and complete record of surface soil moisture (SSM), this study investigated a statistical approach to retrieve a global and long-term SSM dataset from space-borne observations. More specifically, this study investigated the ability of physically based statistical regressions to retrieve SSM from two passive microwave remote sensing observations: the Advanced Microwave Scanning Radiometer (AMSR-E; 2003-Sept. 2011) and the Soil Moisture and Ocean Salinity (SMOS) satellite. Regression coefficients were calibrated using AMSR-E horizontal and vertical brightness temperature (TB) observations and SMOS level 3 SSM (SMOSL3; as a training dataset). This calibration process was carried out over the June 2010-Sept. 2011 period, over which both SMOS and AMSR-E observations coincide. Based on these calibrated coefficients, a global SSM product (referred here to as AMSR-reg) was computed from the AMSR-E TB observations during the 2003-2011 period. The regression quality was assessed by evaluating the AMSR-reg SSM product against the SMOSL3 SSM product over the period of calibration, in terms of correlation (R) and Root Mean Square Error (RMSE). A good agreement (mean global RÂ =Â 0.60 and mean global RMSEÂ =Â 0.057Â m3/m3), was obtained between the AMSR-reg and SMOSL3 SSM products particularly over Australia, central USA, central Asia, and the Sahel. In a second step, the AMSR-reg SSM retrievals and commonly used AMSR-E SSM retrievals derived from the Land Parameter Retrieval Model (AMSR-LPRM), were evaluated against two kinds of SSM references (i) the global MERRA-Land SSM simulations and (ii) in situ measurements over 2003-2009. The results demonstrated that both AMSR-reg and AMSR-LPRM (better when considering global simulations) successfully captured the temporal dynamics of the references used having comparable correlation values. AMSR-reg was more consistent with MERRA-land than AMSR-LPRM in terms of unbiased RMSE (ubRMSE) with a global average of ubRMSE of 0.055Â m3/m3 for AMSR-reg and 0.084Â m3/m3 for AMSR-LPRM. In conclusion, the statistical regression, which is tested here for the first time using long-term spaceborne TB datasets, appears to be a promising approach for retrieving SSM from passive microwave remote sensing TB observations.
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Computers in Earth Sciences
Authors
A. Al-Yaari, J.P. Wigneron, Y. Kerr, R. de Jeu, N. Rodriguez-Fernandez, R. van der Schalie, A. Al Bitar, A. Mialon, P. Richaume, A. Dolman, A. Ducharne,