Article ID Journal Published Year Pages File Type
6346863 Remote Sensing of Environment 2014 12 Pages PDF
Abstract
Using the airborne Polarimetric L-band Imaging Synthetic aperture radar (PLIS) the impact of high revisit cycle and full polarimetric acquisitions on biomass retrieval was investigated by means of backscatter-based multi-temporal methods. Parametric and non-parametric models were used to relate reference biomass levels obtained from field plot measurements and high point density lidar data to backscatter intensities or polarimetric target decomposition components. Single-date retrieval using multiple independent variables provided lower estimation errors when compared to models using one independent variable with errors decreasing by 2% to 15%. The multi-temporal aggregation of daily biomass estimates did not improve the overall retrieval accuracy but provided more reliable estimates with respect to single-date methods. Backscatter intensities improved estimation accuracies up to 10% compared to polarimetric target decomposition components. Using all four polarizations increased the estimation accuracy marginally (2%) when compared to a dual-polarized system. The biomass estimation error was considerably reduced (up to 30%) only by decreasing the spatial resolution and was related to decreasing forest variability with increasing pixel size. These results indicate that, at least in semi-arid areas, future L-band missions would not significantly improve biomass estimation accuracy using backscatter-based modeling approaches despite their better spatial resolution, higher revisit cycles and the availability of fully polarimetric information.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,