Article ID Journal Published Year Pages File Type
6347918 Global and Planetary Change 2016 14 Pages PDF
Abstract
The dynamics of supraglacial pond development in the Everest region are not well constrained at a glacier scale, despite their known importance for meltwater storage, promoting ablation, and transmitting thermal energy englacially during drainage events. Here, we use fine-resolution (~ 0.5-2 m) satellite imagery to reveal the spatiotemporal dynamics of 9340 supraglacial ponds across nine glaciers in the Everest region, ~ 2000-2015. Six of our nine study glaciers displayed a net increase in ponded area over their observation periods. However, large inter- and intra-annual changes in ponded area were observed of up to 17% (Khumbu Glacier), and 52% (Ama Dablam) respectively. Additionally, two of the fastest expanding lakes (Spillway and Rongbuk) partially drained over our study period. The Khumbu Glacier is developing a chain of connected ponds in the lower ablation area, which is indicative of a trajectory towards large lake development. We show that use of medium-resolution imagery (e.g. 30 m Landsat) is likely to lead to large classification omissions of supraglacial ponds, on the order of 15-88% of ponded area, and 77-99% of the total number of ponds. Fine-resolution imagery is therefore required if the full spectrum of ponds that exist on the surface of debris-covered glaciers are to be analysed.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth-Surface Processes
Authors
, , , ,