Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
6348024 | Global and Planetary Change | 2015 | 33 Pages |
Abstract
February-April drought strongly affects agriculture and socio-economics in southeastern China, yet its long-term variability has not been assessed due to the shortness of instrumental records. In this study, we reported a 168-year tree-ring width chronology from a steep, low-elevation site with thin soil layers in the Xianxia Mountains, southeastern China. Contrary to the existing chronologies that are mostly temperature sensitive, this chronology contained a strong February-April precipitation signal, indicating great potential for tree-ring based precipitation reconstructions in southeastern China. The reconstruction explained 47.8% of the instrumental variance during 1951-2012. The full reconstruction indicated that there were 3 dry periods (1873-1896, 1924-1971, 1995-2012) and 2 wet periods (1856-1872, 1972-1994) during 1856-2013. The extreme drought in 2011 was not unprecedented for the past 168Â years, and the recent severe droughts may be part of interdecadal variations in regional February-April precipitation. Our results also suggested that February-April precipitation in southeastern China was highly influenced by the tropical Pacific climate system, in particular El Niño-Southern Oscillation (ENSO).
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Earth-Surface Processes
Authors
Jiangfeng Shi, Huayu Lu, Jinbao Li, Shiyuan Shi, Shuangye Wu, Xinyuan Hou, Lingling Li,