Article ID Journal Published Year Pages File Type
6349105 International Journal of Applied Earth Observation and Geoinformation 2014 13 Pages PDF
Abstract
Light detection and ranging (LiDAR) has become an important tool in forestry. LiDAR-derived models are mostly developed by means of multiple linear regression (MLR) after stepwise selection of predictors. An increasing interest in machine learning and evolutionary computation has recently arisen to improve regression use in LiDAR data processing. Although evolutionary machine learning has already proven to be suitable for regression, evolutionary computation may also be applied to improve parametric models such as MLR. This paper provides a hybrid approach based on joint use of MLR and a novel genetic algorithm for the estimation of the main forest stand variables. We show a comparison between our genetic approach and other common methods of selecting predictors. The results obtained from several LiDAR datasets with different pulse densities in two areas of the Iberian Peninsula indicate that genetic algorithms perform better than the other methods statistically. Preliminary studies suggest that a lack of parametric conditions in field data and possible misuse of parametric tests may be the main reasons for the better performance of the genetic algorithm. This research confirms the findings of previous studies that outline the importance of evolutionary computation in the context of LiDAR analisys of forest data, especially when the size of fieldwork datatasets is reduced.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Computers in Earth Sciences
Authors
, , , , , ,