Article ID Journal Published Year Pages File Type
6356007 Marine Pollution Bulletin 2016 9 Pages PDF
Abstract
Using long-term oceanographic surveys and a 3-D hydrodynamic model we show that localized peak winds (known as shamals) cause fluctuation in water current speed and direction, and substantial oscillations in sea-bottom salinity and temperature in the southern Persian/Arabian Gulf. Results also demonstrate that short-term shamal winds have substantial impacts on oceanographic processes along the southern Persian/Arabian Gulf coastline, resulting in formation of large-scale (52 km diameter) eddies extending from the coast of the United Arab Emirates (UAE) to areas near the off-shore islands of Iran. Such eddies likely play an important role in transporting larvae from well-developed reefs of the off-shore islands to the degraded reef systems of the southern Persian/Arabian Gulf, potentially maintaining genetic and ecological connectivity of these geographically distant populations and enabling enhanced recovery of degraded coral communities in the UAE.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Oceanography
Authors
, , ,